Группа из 46 туристов отправилась в поход на 10 лодках, часть из которых была четырёхместными, а остальные - шестиместными. сколько было лодок каждого вида

llggvvjvhh llggvvjvhh    3   07.06.2019 18:40    3

Ответы
ТомКаулитц ТомКаулитц  07.07.2020 10:45
Пусть х - количество четырёхместных лодок, а у - шестиместных.
х+у=10
4х+6у=46

Решим систему уравнений методом подстановки:
х=10-у
Подставим значение х во второе уравнение:
4(10-у)+6у=46
40-4у+6у=46
2у=46-40
2у=6
у=3 (количество шестиместных лодок).
х=10-3=7 (количество четырёхместных лодок).
ответ: количество шестиместных лодок 3, а количество четырёхместных лодок 7.

проверим: 3+7=10 лодок; 3*6+7*4=18+28=46 туристов.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра