Графік функції: y=(3-x^2)/(x+2 )дослідження функції

dreytes dreytes    2   03.10.2019 12:40    0

Ответы
vovabondar28 vovabondar28  03.05.2020 20:15
Функции  и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая  – вертикальная асимптота.

6) Находим  и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.

Найти первую производную функции

Для проверки правильности нахождения минимального и максимального значения.

7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).

Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты  установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра