Гайз, , ! найдите точки, в которых f'(x)=0, f'(x)> 0, если: б) f(x)=2x+cos(4x-пи) в) f(x)=cos2x

salsa555 salsa555    3   26.07.2019 00:10    2

Ответы
ilya3694444 ilya3694444  13.08.2020 22:23
Решение
б) f(x)=2x+cos(4x-пи) = 2x - cos4x
f `(x) = 2 + 4sin4x
1)  f `(x) = 0
2 + 4sin4x = 0
4sin4x = - 2
sin4x = - 1/2
4x = (-1)^(n) arcsin(-1/2) + πk, k ∈ Z
4x = (-1)^(n+1) arcsin(1/2) + πk, k ∈ Z
4x = (-1)^(n+1) (π/6) + πk, k ∈ Z
x = (-1)^(n+1) (π/24) + πk/4, k ∈ Z
2)   f `(x) > 0
2 + 4sin4x > 0
sin4x > - 1/2
arcsin(- 1/2) + 2πn < 4x < π - arcsin(-1/2) + 2πn, n ∈ Z
- π/6 + 2πn < 4x < π + π/6 + 2πn, n ∈ Z
- π/24 + πn/2 < x < 7π/24 + πn/2, n ∈ Z
в) f(x) = cos2x
f `(x) = - 2sin2x
1) f `(x) = 0
 - 2sin2x = 0
sin2x = 0
2x = πk, k ∈ Z
x = πk/2, k ∈ Z
2)  - 2sin2x > 0
sin2x < 0
- π - arcsin0 + 2πn < 2x < arcsin0 + 2πn, n ∈ Z
- π  + 2πn < 2x <  2πn, n ∈ Z
- π/2  + πn < x < πn, n ∈ Z
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра