1. коэффициент а
a=0 это функция становится линейной y=bx+c
a>0 ветви параболы направлены вверх
a<0 ветви параболы направлены вниз
2. коэффициент с
это точка пересечения графика с осью OY (при x=0)
c>0 пересечение выше оси OX (y>0)
c<0 пересечение ниже оси ОХ (y<0)
c=0 пересечение проходит через начало координат
3. коэффициент b
вершина параболы (абсцисса) вычисляется x(верш) = -b/2a
b = -2a*x(верш)
b = 0 вершина параболы лежит на оси OY
x(верш)>0 вершина расположена правее оси OY
x(верш)<0 вершина левее оси ОY
для того чтобы точно определить по графику знак b надо смотреть на знак a
кроме того b - коэффициент, который отвечает за симметрию.
При b=0 симметрия полная относительно оси OY.
4. очень многое зависит и от дискриминанта D=b²-4ac
если D=0 то график функции касается оси ОХ
если D<0 то график не касается оси ОХ
если D>0 то графие пересекает ось ОХ в двух точках
1. коэффициент а
a=0 это функция становится линейной y=bx+c
a>0 ветви параболы направлены вверх
a<0 ветви параболы направлены вниз
2. коэффициент с
это точка пересечения графика с осью OY (при x=0)
c>0 пересечение выше оси OX (y>0)
c<0 пересечение ниже оси ОХ (y<0)
c=0 пересечение проходит через начало координат
3. коэффициент b
вершина параболы (абсцисса) вычисляется x(верш) = -b/2a
b = -2a*x(верш)
b = 0 вершина параболы лежит на оси OY
x(верш)>0 вершина расположена правее оси OY
x(верш)<0 вершина левее оси ОY
для того чтобы точно определить по графику знак b надо смотреть на знак a
кроме того b - коэффициент, который отвечает за симметрию.
При b=0 симметрия полная относительно оси OY.
4. очень многое зависит и от дискриминанта D=b²-4ac
если D=0 то график функции касается оси ОХ
если D<0 то график не касается оси ОХ
если D>0 то графие пересекает ось ОХ в двух точках