f(x)=ax^2+bx+c
G(x)=f(2x)-f(x)=(4a-a)x^2+(2b-b)x=3ax^2+bx
Минимум x(min)=-b/6a
Подставляя y(min)=b^2/(12a)-b^2/(6a)=-1
Откуда b^2=12a
f(3x)-f(x)=(9a-a)x^2+(3b-b)x=8ax^2+2bx
x(min)=-b/8a
y(min)=b^2/8a - 2*b^2/8a = -b^2/(8a) = -12a/8a = -3/2
f(x)=ax^2+bx+c
G(x)=f(2x)-f(x)=(4a-a)x^2+(2b-b)x=3ax^2+bx
Минимум x(min)=-b/6a
Подставляя y(min)=b^2/(12a)-b^2/(6a)=-1
Откуда b^2=12a
f(3x)-f(x)=(9a-a)x^2+(3b-b)x=8ax^2+2bx
x(min)=-b/8a
y(min)=b^2/8a - 2*b^2/8a = -b^2/(8a) = -12a/8a = -3/2