Если (х,у) решение системы х^2-2xy+4y^2=4 x^3+8y^3=8 то максимальное значение x^2-y^2 равно

liza0234 liza0234    3   28.03.2019 20:00    2

Ответы
УизлиТиСпирс УизлиТиСпирс  27.05.2020 04:09

x^2-2xy+4y^2=4

x^3+8y^3=8

 

Выносим общий множитель и преобразовываем ур-ие:

2-(x+2y)=0

x^3+8y^3=8

 

x=2-2y

(2-2y)^3+8y^3=8

 

Решим ур-ие:

(2-2y)^3+8y^3-8=0

-8y^3+24y^2-24y+8+8y^3-8=0

24y^2-24y=0

y^2-y=0

y(y-1)=0

y=0

y=1

 

Найдём x:

y=0⇒x=2

y=1⇒x=0

 

max (X^2-Y^2)=(2^2-0^2)=4

 

 

 

 

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра