Два трактористи зорали поле за 6 год спільної роботи. За скільки годин може зорати це поле кожен тракторист, працюючи самостійно, якщо перший зробить це на 16 год швидше, ніж другий?
Перший тракторист може зорати поле самостійно за х годин Другий тракторист може зорати його самостійно за х + 16 годин. За умовою задачі, коли працюють разом, вони зорали поле за 6 годин. Це означає, що за 1 годину вони зорали 1/6 частину поля. За умовою, перший тракторист може зорати 1/х частину поля за 1 годину, а другий тракторист може зорати 1/(х + 16) частину поля за 1 годину. 1/х + 1/(х + 16) = 1/6 6(х + 16) + 6х = х(х + 16) 6х + 96 + 6х = х^2 + 16х 12х + 96 = х^2 + 16х х^2 + 16х - 12х - 96 = 0 х^2 + 4х - 96 = 0 За Вієта: х1 = -12 - не задовольняє х2 = 8 годин Перший тракторист може зорати поле самостійно за 8 годин, а другий тракторист за 8 + 16 = 24 години.
Другий тракторист може зорати його самостійно за х + 16 годин.
За умовою задачі, коли працюють разом, вони зорали поле за 6 годин. Це означає, що за 1 годину вони зорали 1/6 частину поля.
За умовою, перший тракторист може зорати 1/х частину поля за 1 годину, а другий тракторист може зорати 1/(х + 16) частину поля за 1 годину.
1/х + 1/(х + 16) = 1/6
6(х + 16) + 6х = х(х + 16)
6х + 96 + 6х = х^2 + 16х
12х + 96 = х^2 + 16х
х^2 + 16х - 12х - 96 = 0
х^2 + 4х - 96 = 0
За Вієта:
х1 = -12 - не задовольняє
х2 = 8 годин
Перший тракторист може зорати поле самостійно за 8 годин, а другий тракторист за 8 + 16 = 24 години.