x²+2y²+2xy+6y+10=(x²+2xy+y²)+(y²+6y+9)+1=(x+y)²+(y+3)²+1
Так как квадрат числа неотрицателен, неравенство
(x+y)²+(y+3)²+1>0
верно при любых x, y
Доказано.
x²+2y²+2xy+6y+10=(x²+2xy+y²)+(y²+6y+9)+1=(x+y)²+(y+3)²+1
Так как квадрат числа неотрицателен, неравенство
(x+y)²+(y+3)²+1>0
верно при любых x, y
Доказано.