Доведіть що квадрат будь якого простого числа окрім 2 і 3 при діленняна 12 в остачі дає 1

fdffxdf fdffxdf    2   19.10.2020 03:52    0

Ответы
Arina3010 Arina3010  18.11.2020 03:52

Объяснение:

Любое простое число нечетно и его квадрат запишем так  

(2х+1)^2 = 4х^2+4х+1  

т. е. при делении квадрата простого числа на 4 остаток 1  

Любое простое число не делится на 3, значит можно записать или как кратное 3+1 или как кратное 3+2.  

Квадрат такого числа будет выглядеть  

(3х+1)^2 = 9х^2+6х+1  

или  

(3х+2)^2 = 9х^2+12х+4 =9х^2+12х+3+1  

т. е при делении квадрата простого числа на 3 в обоих случаях остаток 1  

В итоге квадрат простого числа можно записать как 4*3*у+1, что равно 12*у+1, что и требовалось, поделив его на 12 получим остаток 1

ПОКАЗАТЬ ОТВЕТЫ