1.Область визначення фунції: D(y)=R - всі дійсні числа. 2. Фунція парна чи непарна, провіримо y(-x)=(-x)⁴-(-x)²=x⁴-x²=y(x) - парна 3. Критичні точки, зростання і спадання функції y'=4x³-2x y'=0 2x(2x²-1)=0 x1=0; x2=√2/2 x3=-√2/2
___-__(-√2/2)__+__(0)__-__(√2/2)___+___> Спадає зрост спад зрост Тому, функція спадає на проміжку (-∞;-√2/2)U(0;√2/2), зростає - (-√2/2;0)U(√2/2;+∞), в точці х=-√2/2 и х=√2/2 функція має локальний мінімум, а в точці х=0 - локальний максимум 4. Точки перегину y''=12x²-2 12x²-2=0 x1=-√6/6; x2=√6/6
__+__(-√6/6)__-___(√6/6)___+___>
Вертикальні асимптоти немає Горизонтальних і похилих асимптот немає
2. Фунція парна чи непарна, провіримо
y(-x)=(-x)⁴-(-x)²=x⁴-x²=y(x) - парна
3. Критичні точки, зростання і спадання функції
y'=4x³-2x
y'=0
2x(2x²-1)=0
x1=0; x2=√2/2 x3=-√2/2
___-__(-√2/2)__+__(0)__-__(√2/2)___+___>
Спадає зрост спад зрост
Тому, функція спадає на проміжку (-∞;-√2/2)U(0;√2/2), зростає - (-√2/2;0)U(√2/2;+∞), в точці х=-√2/2 и х=√2/2 функція має локальний мінімум, а в точці х=0 - локальний максимум
4. Точки перегину
y''=12x²-2
12x²-2=0
x1=-√6/6; x2=√6/6
__+__(-√6/6)__-___(√6/6)___+___>
Вертикальні асимптоти немає
Горизонтальних і похилих асимптот немає