Дослідіть функцію на екстремуми
1) f(x) = x^2 + 2x - 3
2) f(x) = ( x-1 ) / (2x + 3)
З поясненням будь ласка

КотикОцелотик1 КотикОцелотик1    2   02.06.2020 20:08    0

Ответы
лисичка73 лисичка73  03.06.2020 08:11
Так как f '(x) = 6x2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x1 = 2 и x2 = 3. Экстремумы могут быть только в них. Так как при переходе через x1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через x2 = 3 производная меняет знак минус на плюс, поэтому в точке x2 = 3 у функции минимум. Вычислив значения функции при x1 = 2 и x2 = 3, найдем экстремумы функции: максимумf(2) = 14 и минимумf(3) = 13.Объяснение прям в ответе
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра