Докажите тождество cos 3α*cos ^3α+sin 3α*sin^(3)α=cos 2α

YuliaG2000 YuliaG2000    2   03.07.2020 16:54    1

Ответы
2116121056 2116121056  07.09.2020 01:17

Нужно доказать \cos 3\alpha\cos^3\alpha+\sin3\alpha\sin^3\alpha=\cos^32\alpha

\cos3\alpha\cos^3\alpha+\sin3\alpha\sin^3\alpha=\cos3\alpha\cos \alpha(1-\sin^2\alpha)+\sin3\alpha\sin\alpha(1-\cos^2\alpha)\\ \\ =\cos3\alpha\cos\alpha+\sin3\alpha\sin\alpha-\cos3\alpha\cos\alpha\sin^2\alpha-\sin3\alpha\sin\alpha\cos^2\alpha=\\ \\ =\cos(3\alpha-\alpha)-\cos \alpha\sin \alpha(\cos 3\alpha\sin \alpha+\sin 3\alpha\cos \alpha)=\\ \\ =\cos 2\alpha-\cos \alpha\sin \alpha\sin(3\alpha+\alpha)=\cos 2\alpha-\cos \alpha\sin 2\alpha\sin2\alpha\cos 2\alpha=

=\cos 2\alpha(1-\sin^22\alpha)=\cos 2\alpha\cdot \cos^22\alpha=\cos^32\alpha

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра