Докажите неравенство а^4+в^4≥а^3в+ав^3

lilka23 lilka23    1   17.09.2019 10:00    0

Ответы
77788899 77788899  07.10.2020 21:32

а⁴ + b⁴ ≥ а³b + аb³

1)

а⁴ + b⁴ - а³b - аb³ ≥ 0

а³(а-b) - b³(а-b) ≥ 0

(а-b)(а³-b³) ≥0

(а-b)(а-b)(а²+аb+b²) ≥0

(а-b)²·(а²+аb+b²) ≥0

2)

Первая скобка всегда больше или равна 0, остаётся доказать, что вторая скобка тоже всегда больше или равна 0.

а²+аb+b² ≥0 

a) Докажем для неотрицательных a и b.

(a²+ab+ab+b²)-ab ≥ 0

(a² + 2ab + b²) ≥ ab

(a+b)² ≥ ab

а+b ≥ √аb 

 Это неравенство справедливо как следствие из теоремы Коши для среднего арифметического и среднего геометрического:

(а+b)/2 ≥ √аb

Таким образом, всегда справедливо неравенство во второй скобке

(a²+ab+b²) ≥ 0.

2) Докажем справедливость неравенства  (a²+ab+b²) > 0 для  отрицательных значений a и b.

a<0;  b<0

a²>0;  b²>0 - первое и третье слагаемые a² и  b² всегда положительны

ab>0,  как произведение двух отрицательных(минус × минус = плюс)

Сумма положительных слагаемых тоже положительна: 

(a²+ab+b²) > 0

3) Докажем справедливость неравенства  (a²+ab+b²) > 0 для  значений a и b, различных по знаку:  a>0;  b<0.

(a²+ab+ab+b²)-ab > 0

(a² + 2ab + b²) > ab

(a+b)² > ab

Это неравенство справедливо, т.к. 

(a+b)² ≥ 0 

ab < 0 (плюс × минус = минус)

Положительное число больше отрицательного.


Таким образом все три варианта доказывают справедливость неравенства 

(а²+ab+b²)≥0. Что и требовалось доказать.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра