Объяснение:
Посчитаем:
Тут выражение, равное разности степеней чисел 21 , 3 и 4
Свойство степени числа такое:
1. если показатель (цифра сверху) положительное (больше нуля), то пишем обычную степень .
2. если показатель равен нулю
3. если показатель меньше нуля, то пишем так:
Рассмотрим на нашем примере и посчитаем:
1) 21 в 0 степени - 1 по второму свойству.
2) 3 в степени -2 равно по 3 свойству.
3) 4 в степени -2 равно по 3 свойству.
А затем выполним над ними операции, приведя к общему знаменателю:
144, так как 144 делится и на 16, и на 9 , чтобы было удобнее считать.
- положительное число, то есть число. которое больше 0. Что и требовалось доказать.
Объяснение:
Посчитаем:
Тут выражение, равное разности степеней чисел 21 , 3 и 4
Свойство степени числа такое:
1. если показатель (цифра сверху) положительное (больше нуля), то пишем обычную степень
.
2. если показатель равен нулю
3. если показатель меньше нуля, то пишем так:
Рассмотрим на нашем примере и посчитаем:
1) 21 в 0 степени - 1 по второму свойству.
2) 3 в степени -2 равно
по 3 свойству.
3) 4 в степени -2 равно
по 3 свойству.
А затем выполним над ними операции, приведя к общему знаменателю:
144, так как 144 делится и на 16, и на 9 , чтобы было удобнее считать.
- положительное число, то есть число. которое больше 0. Что и требовалось доказать.