Докажите что уравнение (x^2-2x+4)(x^2-x+5/4)=3 не имеет корней

stupinaksp029hy stupinaksp029hy    2   20.03.2019 16:37    2

Ответы
fargustyana fargustyana  26.05.2020 09:10

(x²-2x+4)(x²-x+5/4)=3|·4

(x²- 2x + 4)(4x²- 4x + 5) = 12;

(x²- 2x + 1 + 3)(4x²- 4x + 1 + 4) = 12;

((x - 1)² + 3)((2x - 1)²+ 4) = 12.

Поскольку (x - 1)² + 3 имеет наименьшее значение 3, а (2x - 1)²+ 4 - нименьшее значение 4, то их произведение принимает наименьшее значение 3 · 4 = 12.

Значит равенство ((x - 1)² + 3)((2x - 1)²+ 4) = 12 возможно только при условии, что (x - 1)² = 0 и (2x - 1)² = 0. А поскольку не существует такого значения х, при котором одновременно (x - 1)² = 0 и (2x - 1)² = 0, то данное уравнение не имеет решений.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра