Докажите, что разность трехзначного числа и его же записанного наоборот делиться на 99, развернуто нужно описать процесс объяснения с примером числа 583. заранее !
Да тут, собственно, неважно, какое число. В общем виде имеем: 1)Первоначальная запись числа 100a+10b+c, a,b,c - некоторые числа , a,b,c∈N 2)Число "наоборот" имеет вид 100c+10b+a; 3)Запишем их разность: В составе этого выражения есть число 99, а значит число 99(a-c)⋮99 (⋮ - возможно деление без остатка) С числом 583: a=5; b=8; c=3; 583-385=99(5-3)=99*2=198; Проверим обычными вычислениями : 583-385=198, всё верно, что и требовалось доказать.
1)Первоначальная запись числа 100a+10b+c, a,b,c - некоторые числа , a,b,c∈N
2)Число "наоборот" имеет вид 100c+10b+a;
3)Запишем их разность: В составе этого выражения есть число 99, а значит число 99(a-c)⋮99 (⋮ - возможно деление без остатка)
С числом 583: a=5; b=8; c=3; 583-385=99(5-3)=99*2=198; Проверим обычными вычислениями : 583-385=198, всё верно, что и требовалось доказать.