Докажите, что при всех натуральных значениях n значение выражения n (в кубе) + 3n (в квадрате) +2n делится нацело на 6

kurzinovaa kurzinovaa    2   17.08.2019 16:50    1

Ответы
TheDrever TheDrever  05.10.2020 01:07
Надо разложить выражение на множители
n^{3} + 3n^{2} + 2n = n ( n^{2} +3n+2)=n(n+1)(n+2)
Квадратный трехчлен n^{2} +3n+2 имеет корни -1 и -2.
Выражение  n(n+1)(n+2) является произведением трех последовательных натуральных чисел, среди которых всегда есть хотя бы одно четное число и одно число, кратное 3.
Но если число четное и делится на 3 , то оно делится и на 6.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра