Докажите что при любых a,b,c уравнение имеет 2 решения или не имеет их вообще. x^4+(2a+1-b^2)*x^3+a*x^2+|c-|a|^b |*x+|c+|b|^a |+1=0

ргшгр ргшгр    2   09.06.2019 17:10    1

Ответы
ARISKA2006 ARISKA2006  08.07.2020 11:56
    Положим что  корни уравнения равны   x_{1};x_{2};x_{3} ; x_{4} 
 Тогда их сумма  равна    -\sqrt{2a+1-b^2} это 
  x^4+\sqrt{2a+1-b^2}x^3+ax^2-(c+|b|^a)x+|c-|a|^b|+1=0 \\\\
x_{1}+x_{2}+x_{3}+x_{4}=-\sqrt{2a+1-b^2}\\
x_{1}x_{2}+x_{1}x_{3}+x_{1}x_{4}+x_{2}x_{3}+x_{2}x_{4}+x_{3}x_{4}=a\\
x_{1}x_{2}x_{3}+x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4}+x_{2}x_{3}x_{4}=|c+|a|^b|\\
x_{1}x_{2}x_{3}x_{4}=|c-|b|^a|+1\\\\ 
 
 
 Заметим что  сумма корней отрицательное число ,   а произведение корней  всегда положительное    число , значит   
 Либо два корня отрицательны , либо все  корни отрицательны 
 x_{1},x_{2} , x_{3},x_{4} \neq 0\\\\
 
Рассмотрим    второй случаи 
Если   x_{1},x_{2}<0\\&#10;  без потери общности   можно взять x_{3}x_{4}0 
 Из первого b \in [-\sqrt{2a+1};\sqrt{2a+1} ] \\&#10; a-\frac{1}{2} 
Из третьего  так как произведение всех корней отрицательно , значит  сумма   S<0  , но это не верно , так как стоит модуль , значит четыре корня   не может быть. 
Второй случаи ,  возможен , но не всегда  
 x_{1};x_{2}<0\\&#10;   по второму условию следует что 
  a0 
 По третьему 
 x_{1}x_{2}x_{3}0 
  Возможно когда  x_{1}x_{2}x_{3} x_{1}x_{2}x_{4}+x_{3}x_{4}+x_{2}x_{3}x_{4} 

  

  
 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра