Докажите, что при любом натуральном значении n, число "n^6 + 2n^5 - n^2 - 2n" делится на 24.

loli40 loli40    1   03.09.2019 07:00    2

Ответы
БиологКоля БиологКоля  06.10.2020 14:09
N^6 + 2n^5 - n^2 - 2n = n*(n^5 + 2n^4 - n - 2) = n*(n^4 (n + 2) - (n + 2)) =
= n*(n^4 - 1)*(n + 2) = n*(n + 2)*(n^2 - 1)*(n^2 + 1) =
= (n - 1)*n*(n + 1)*(n + 2)*(n^2 + 1)
Первые четыре множителя идут подряд. Следовательно, одно из них делится на 3. Также два из них обязательно делятся на 2, причём одно из них и на 4. Вот и получается, что всё число делится на 24 = 3*2*4.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра