Для решения рассматриваем три случая, а именно: 1) трехчлен равен нулю 2) трехчлен меньше нуля 3) трехчлен больше нуля.
Для решения уравнения воспользуемся тем, что сумма все коэффициентов в этом уравнении равна нулю, отсюда следует, что один корень , а второй равен частному свободного члена на первый: . Так же можно было решать по теореме Виета: произведение корней равно шести, а их сумма семи. Итак, и нули этого трехчлена, потому что при них значение этого выражения будет равно нулю. Теперь, чтобы данное выражение было больше нуля, это будут все решения за нулями, то есть: и наоборот, чтобы значение выражения было отрицательно нужно брать значения из отрезка между нулями, то есть: . Все, решено! ответ: при и при при
1) трехчлен равен нулю
2) трехчлен меньше нуля
3) трехчлен больше нуля.
Для решения уравнения воспользуемся тем, что сумма все коэффициентов в этом уравнении равна нулю, отсюда следует, что один корень , а второй равен частному свободного члена на первый: . Так же можно было решать по теореме Виета: произведение корней равно шести, а их сумма семи.
Итак, и нули этого трехчлена, потому что при них значение этого выражения будет равно нулю.
Теперь, чтобы данное выражение было больше нуля, это будут все решения за нулями, то есть: и наоборот, чтобы значение выражения было отрицательно нужно брать значения из отрезка между нулями, то есть: . Все, решено!
ответ:
при и
при
при