Докажите, что четырехзначное число, у которого цифра тысяч равна цифре сотен, а цифра десятков - цифре единиц, делится на 11. вторая : докажите, что натуральное число вида n(2)+5n+6 делится на n+2. *в скобках степень.

irinapak1985 irinapak1985    2   12.09.2019 18:20    18

Ответы
lena1super lena1super  21.08.2020 06:58
Число делится на 11, если знакопеременная сумма его цифр (последняя цифра со знаком +) делится на 11.Число делится на 7, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 7.Число делится на 13, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 13.Остаток от деления числа на 11 равен остатку от деления на 11 знакопеременной суммы его цифр (последняя цифра со знаком +)Остаток от деления числа на 7 равен остатку от деления на 7 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).Остаток от деления числа на 13 равен остатку от деления на 13 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра