Доказать тождество sin^2x+sin^4x + cos^2x+cos^4x = 1-cos2x p.s. : (^2; ^4 - корень из двух; корень из четырех)

GarmionaG7 GarmionaG7    2   17.05.2019 15:20    2

Ответы
мафінка мафінка  10.06.2020 20:09

(sin2x + sin4x)^2 + (cos2x + cos4x)^2 = 4(cosx)^2
(sin2x)^2+2sin2xsin4x+(sin4x)^2 + (cos2x)^2+2cos2xcos4x+(cos4x)^2=4cos^2x
((sin2x)^2+(cos2x)^2)+((sin4x)^2 + (cos4x)^2)+2sin2xsin4x+2cos2xcos4x=4cos^2x
1+1+2(sin2xsin4x+cos2xcos4x)=4cos^2x
sin2xsin4x+cos2xcos4x=2cos^2x-1
cos(4x-2x)=2cos^2x-1
cos2x=cos2x

Доказано

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра