Доказать sina+sinb+sing=4cos (a/2)cos (b/2)cos (g/2), где a - альфа, b - бета g - гамма углы треугольника

pidarok2281 pidarok2281    2   31.08.2019 01:00    1

Ответы
Polina19790 Polina19790  06.10.2020 06:05
A+b+c=pi => sin(c)=sin(a+b)
sin(a)+sin(b)+sin(c)=sin(a)+sin(b)+sin(a+b)=2sin({a+b}/2)cos({a-b}/2)+2sin({a+b}/2)cos({a+b}/2)=2sin({a+b}/2)(cos({a-b}/2)+cos({a+b}/2))=
=2cos(c/2)*2*(cos(a/2)*cos(b/2)) что и требовалось доказать

sin({a+b}/2)=sin(90-c/2)=cos(c/2)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра