F(x)=∫(x³+2)dx=x^4/4+2x+C
F(2)=2^4/4+2*2+C=15
8+C=15
C=15-8=7
F(x)=x^4/4+2x+7
2) F(x)=∫(1-2x)dx=x-x²+C
F(3)=3-3²+C=2
3-9+C=2
C-6=2
C=8
F(x)=x-x²+8
3)
∫((2/sin3x)-3*x^(-4))dx=2/3ln|tg(3x/2)|+3/3x^-3+C
∫2dx/sin3x=2/3∫dy/siny=2/3∫(2dt/(1+t²))*(1+t²)/2t=2/3∫dt/t=2/3ln|t|=
=2/3ln|tgy/2|=2/3ln|tg(3x/2)|+C
3x=y dy/3=dx
tgy/2=t
siny=2t/(1+t²)
dy=2dt/(1+t²)
F(x)=∫(x³+2)dx=x^4/4+2x+C
F(2)=2^4/4+2*2+C=15
8+C=15
C=15-8=7
F(x)=x^4/4+2x+7
2) F(x)=∫(1-2x)dx=x-x²+C
F(3)=3-3²+C=2
3-9+C=2
C-6=2
C=8
F(x)=x-x²+8
3)
∫((2/sin3x)-3*x^(-4))dx=2/3ln|tg(3x/2)|+3/3x^-3+C
∫2dx/sin3x=2/3∫dy/siny=2/3∫(2dt/(1+t²))*(1+t²)/2t=2/3∫dt/t=2/3ln|t|=
=2/3ln|tgy/2|=2/3ln|tg(3x/2)|+C
3x=y dy/3=dx
tgy/2=t
siny=2t/(1+t²)
dy=2dt/(1+t²)