Даю задачу и решение. Необходимо строго объяснить/доказать фрагменты решения, которые приведены без пояснений, не используя (!) перебор чисел или такие же неточные формулировки. Задача:
Записаны по кругу в каком-то порядке числа от 1 до 10 включительно. Рассмотрим все 10 возможных сумм из трёх идущих подряд чисел. Возьмём наименьшую из этих сумм. Какое максимальное значение она может иметь?
Решение:
1. Рассмотрим три тройки соседних чисел, выбросив число 10. (Почему мы его не рассматриваем?)
2. Их сумма 1+2+...+9=45. Среди этих троек найдётся такая, сумма в которой не больше 45/3. (Почему найдётся? Перебором что ли?)
3. Максимальное значение наименьшей из суммы трёх идущих подряд чисел равно 15. (Непонятно, как обобщены эти три тройки на все возможные 10 сумм при разных перестановках.)

Фаай Фаай    1   13.06.2020 20:57    0

Ответы
Tasik3 Tasik3  30.08.2020 12:17

Объяснение:

Пусть сумма одной тройки больше, чем 45/3=15, пусть то же справедливо для второй тройки. Тогда их сумма будет больше, чем 15+15=30, а тогда сумма оставшихся трёх чисел будет меньше, чем 45-30=15=45/3.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра