Добрый день! Конечно, я помогу разобраться с этим вопросом.
Даны три множества:
A = {1,2,3,...,137}
B = {1,3,5,7,9,...}
C = {3,5,7,9,11,...,31}
Мы должны выбрать верные утверждения из списка:
C⊂A
A⊂B
C⊂B
B⊂A
B⊂C
Давайте разберемся с каждым утверждением по очереди:
1) C⊂A означает, что каждый элемент множества C также принадлежит множеству A. В нашем случае, множество C содержит числа от 3 до 31, а множество A содержит числа от 1 до 137. Таким образом, все числа из множества C также входят в множество A, следовательно, утверждение C⊂A верно.
2) A⊂B означает, что каждый элемент множества A также принадлежит множеству B. В нашем случае, множество A содержит числа от 1 до 137, а множество B содержит только нечетные числа. Таким образом, не все числа из множества A входят в множество B (например, числа 2, 4, 6 и т. д.), следовательно, утверждение A⊂B неверно.
3) C⊂B означает, что каждый элемент множества C также принадлежит множеству B. В нашем случае, множество C содержит числа от 3 до 31, а множество B содержит только нечетные числа. Все числа из множества C являются нечетными числами, поэтому каждое число из множества C также входит в множество B. Утверждение C⊂B верно.
4) B⊂A означает, что каждый элемент множества B также принадлежит множеству A. В нашем случае, множество B содержит только нечетные числа, а множество A содержит числа от 1 до 137. Нечетные числа из множества B содержатся в множестве A, а в нем также есть четные числа, которые не входят в множество B (например, числа 2, 4, 6 и т. д.). Следовательно, утверждение B⊂A неверно.
5) B⊂C означает, что каждый элемент множества B также принадлежит множеству C. В нашем случае, множество B содержит только нечетные числа, а множество C содержит числа от 3 до 31. Все нечетные числа, содержащиеся в множестве B, также присутствуют в множестве C. Утверждение B⊂C верно.
Итак, верными утверждениями являются C⊂A, C⊂B и B⊂C.
Надеюсь, я смог разъяснить ответ на данный вопрос и сделать его понятным для школьника. Если у вас остались еще вопросы, пожалуйста, обращайтесь!
Даны три множества:
A = {1,2,3,...,137}
B = {1,3,5,7,9,...}
C = {3,5,7,9,11,...,31}
Мы должны выбрать верные утверждения из списка:
C⊂A
A⊂B
C⊂B
B⊂A
B⊂C
Давайте разберемся с каждым утверждением по очереди:
1) C⊂A означает, что каждый элемент множества C также принадлежит множеству A. В нашем случае, множество C содержит числа от 3 до 31, а множество A содержит числа от 1 до 137. Таким образом, все числа из множества C также входят в множество A, следовательно, утверждение C⊂A верно.
2) A⊂B означает, что каждый элемент множества A также принадлежит множеству B. В нашем случае, множество A содержит числа от 1 до 137, а множество B содержит только нечетные числа. Таким образом, не все числа из множества A входят в множество B (например, числа 2, 4, 6 и т. д.), следовательно, утверждение A⊂B неверно.
3) C⊂B означает, что каждый элемент множества C также принадлежит множеству B. В нашем случае, множество C содержит числа от 3 до 31, а множество B содержит только нечетные числа. Все числа из множества C являются нечетными числами, поэтому каждое число из множества C также входит в множество B. Утверждение C⊂B верно.
4) B⊂A означает, что каждый элемент множества B также принадлежит множеству A. В нашем случае, множество B содержит только нечетные числа, а множество A содержит числа от 1 до 137. Нечетные числа из множества B содержатся в множестве A, а в нем также есть четные числа, которые не входят в множество B (например, числа 2, 4, 6 и т. д.). Следовательно, утверждение B⊂A неверно.
5) B⊂C означает, что каждый элемент множества B также принадлежит множеству C. В нашем случае, множество B содержит только нечетные числа, а множество C содержит числа от 3 до 31. Все нечетные числа, содержащиеся в множестве B, также присутствуют в множестве C. Утверждение B⊂C верно.
Итак, верными утверждениями являются C⊂A, C⊂B и B⊂C.
Надеюсь, я смог разъяснить ответ на данный вопрос и сделать его понятным для школьника. Если у вас остались еще вопросы, пожалуйста, обращайтесь!