Данна равнобедренная трапеция, в которой АВ параллельна CD. Диагонали трапеции пересекаются в точке О.
а) Докажите, что АО/ОС = ВО/ОД. б) Найдите СД, если OD = 10 см, ОВ = 8 см, АВ = 15 см

мишка4543 мишка4543    1   24.02.2020 08:56    1

Ответы
oxanalusevich oxanalusevich  03.09.2020 14:16

Объяснение:

а)ΔАОВ подобен ΔСОД :Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

∠АОВ=∠СОД как вертикальные и ∠ВАО=∠OСД как накрест лежащии при    АВ║ДС, АС-секущая . В подобных треугольниках сходственные стороны пропорциональны : АО/ОС = ВО/ОД.

б) ВО/ОД=АВ/ДС, 8/10=15/ДС  , ДС=(10*15)/8=18,75

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра