Cos2x + 6sin x -5 =0 решите уравнение

Alenka267 Alenka267    2   19.08.2019 22:40    0

Ответы
mishanyak19991 mishanyak19991  24.04.2020 04:02
Разложим косинус двойного аргумента по формуле:
cos2x = cos²x - sin²x:
cos²x - sin²x + 6sinx - 5 = 0
Теперь прибавим и отнимем sin²x, чтобы использовать основное тригонометрическое тождество:
sin²x + cos²x - 2sin²x + 6sinx - 5 = 0
1 - 2sin²x + 6sinx - 5 = 0
-2sin²x + 6sinx - 4 = 0 ( разделим на -2):
sin²x - 3sinx + 2 = 0
Пусть t = sinx, t€[-1; 1].
t² - 3t + 2 = 0
t1 + t2 = 3
t1•t2 = 2

t1 = 2 - не входит в промежуток
t2 = 1.
Обратная замена:
sinx = 1
x = π/2 + 2πk, k€Z.

ответ: х = π/2 + 2πk, k€Z.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра