x=pi/4+k*(pi)/2, k∈Z
Объяснение:
cos(270+2x)(sin(180+x))\cos(180+x)=1
(sin(2x)sin(180+x))\(cos(180)cos(x)-sin(180)sin(x))=1
(2sin(x)cos(x)sin(180+x))\(0.5(cos(180-x)+cos(180+x))-sin(180)sin(x))=1
(2sin(x)cos(x)sin(180+x))\(-cos(x))=1
2sin(x)(-1)sin(180+x)=1
-2sin(x)(-sin(x))=1
2sin²(x)=1
sin²(x)=0.5
sin(x)=±(√2)/2
x=pi/4+k*(pi)/2, k∈Z
Объяснение:
cos(270+2x)(sin(180+x))\cos(180+x)=1
(sin(2x)sin(180+x))\(cos(180)cos(x)-sin(180)sin(x))=1
(2sin(x)cos(x)sin(180+x))\(0.5(cos(180-x)+cos(180+x))-sin(180)sin(x))=1
(2sin(x)cos(x)sin(180+x))\(-cos(x))=1
2sin(x)(-1)sin(180+x)=1
-2sin(x)(-sin(x))=1
2sin²(x)=1
sin²(x)=0.5
sin(x)=±(√2)/2
x=pi/4+k*(pi)/2, k∈Z