Цифры двузначного числа таковы, что если между ними вставить число 5, то цифры полученного трехзначного числа составят арифметическую прогрессию, а если вставить число 3, то - . найдите это двузначное число.

samikby samikby    3   17.06.2019 04:10    2

Ответы
эмили40 эмили40  13.07.2020 21:24
Пусть искомое число Х=ab=10a+b
Если вставить число 5, то получится число Y=a5b=100a+50+b
При этом a_{3}=(a,5,b) - арифметическая прогрессия. Тогда:
5= \frac{a+b}{2}

Если вставить число 3, то получится число Z=a3b=100a+30+b
При этом b_{3}=(a,3,b) - геометрическая прогрессия. Тогда:
\frac{3}{a}= \frac{b}{3}

Запишем систему уравнений:
\left \{ {{5= \frac{a+b}{2}} \atop { \frac{3}{a}= \frac{b}{3}}} \right.

\left \{ {a+b=10} \atop { ab=9}} \right.

\left \{ {a=10-b} \atop { b*(10-b)=9}} \right.

\left \{ {a=10-b} \atop { b^{2}-10b+9=0}} \right.

b^{2}-10b+9=0, D=100-36=64
b_{1}= \frac{10-8}{2}=1
b_{2}= \frac{10+8}{2}=9

a_{1}=10-1=9
a_{2}=10-9=1

9, 5, 1 - арифметическая прогрессия, d=5-9=1-5=-4
9, 3, 1 - геометрическая прогрессия, q=3/9=1/3
Искомое 2-значное число 91

1, 5, 9 - арифметическая прогрессия, d=5-1=9-5=4
1, 3, 9 - не является геометрической прогрессией, q=3/1=9/3
Искомое 2-значное число 19

ответ: 91 и 19
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра