Бросили шесть монет. какова вероятность, что число выпавших гербов,будет больше числа решек? ответ до сотых

ВикторикаРоэн ВикторикаРоэн    3   15.07.2019 00:00    2

Ответы
Stopnuyk2017 Stopnuyk2017  20.09.2020 18:57
Всего исходов: 2*2*2*2*2*2=64. То есть:

Всего благоприятствующих исходов выпишем в виде таблицы
\{\Gamma,\Gamma,\Gamma,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,P,\Gamma,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,P,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,P,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,\Gamma,P,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,\Gamma,\Gamma,P\}\\\{P,\Gamma,\Gamma,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,P,P,\Gamma,\Gamma,\Gamma\}\\ \{P,\Gamma,P,\Gamma,\Gamma,\Gamma\}\\ \{P,\Gamma,\Gamma,P,\Gamma,\Gamma\}\\ \{P,\Gamma,\Gamma,\Gamma,P,\Gamma\}\\ \{P,\Gamma,\Gamma,\Gamma,\Gamma,P\}
\{P,P,\Gamma,\Gamma,\Gamma,\Gamma\}
\{\Gamma,P,\Gamma,P,\Gamma,\Gamma\}\\ \{\Gamma,P,\Gamma,\Gamma,P,\Gamma\}\\ \{\Gamma,P,\Gamma,\Gamma,\Gamma,P\}
\{\Gamma,\Gamma,P,P,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,P,\Gamma,P,\Gamma\}\\ \{\Gamma,\Gamma,P,\Gamma,\Gamma,P\}
\{\Gamma,\Gamma,\Gamma,P,P,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,P,\Gamma,P\}
\{\Gamma,\Gamma,\Gamma,\Gamma,P,P\}

Всего благоприятствующих - 22

Искомая вероятность: P = 22/64 ≈ 0.34
ПОКАЗАТЬ ОТВЕТЫ
pershikovanata pershikovanata  20.09.2020 18:57
Попробуем дать более простое решение 

всего комбинаций

2^6=64

нам подойдут случаи выпадения гербов 4,5,6
найдем количество таких

C_6^4+C_6^5+C_6^6= \frac{6!}{4!2!}+ \frac{6!}{5!1!}+1=15+6+1= 22

Значит вероятность

P= \frac{22}{64}= 0.34375

ответ  0,34
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра