Бассейн наполняется двумя трубами за 8 часов если открыть только 1 трубу бассейн заполниться на 12 часов быстрее чем если открыть только 2 трубу за сколько часов наполнит бассейн только 1 труба
Пусть за х часов может наполнить бассейн 1-я труба, тогда вторая наполнит его за (х+12) часов. Так как, работая вместе,они наполнят бассейн за 8 часов, то можно составить уравнение:
Последний ответ не подходит по смыслу задачи, поэтому первая труба наполнит бассейн за 12 часов.
1/x+12 вторая
1/х -первая
1/(x+12)+1/x=1/8
8x+8(x+12) = x^2+12x
16x+96=x^2+12x
x^2-4x-96=0
D=16 +4*96 = V400=20
x1=4+20/2=12
x=-8
ответ за 12 часов!
Пусть за х часов может наполнить бассейн 1-я труба, тогда вторая наполнит его за (х+12) часов. Так как, работая вместе,они наполнят бассейн за 8 часов, то можно составить уравнение:
Последний ответ не подходит по смыслу задачи, поэтому первая труба наполнит бассейн за 12 часов.