Алгебра.
у выражения
sin (a-B) + 2 cos a×sin B​

larikhambekov larikhambekov    1   05.05.2020 08:38    0

Ответы
joshwa77 joshwa77  14.10.2020 07:11

Объяснение:

sin(α-β)+2*cosβ*sinα=sin(α-β)+2*sinβ*cosα=

=sin(α-β)+2*(sin(β-α)+sin(β+α))/2=sin(α-β)-sin(α-β)+sin(α+β)=sin(α+β).


Алгебра.у выраженияsin (a-B) + 2 cos a×sin B​
ПОКАЗАТЬ ОТВЕТЫ
stacymacalister stacymacalister  14.10.2020 07:11

sin(a+B)

Объяснение:

sin (a-B) + 2 cos (a)×sin (B)​

 Воспользуемся формулой для sin (a-B): sin(x-y) = sin(x)cos(y) - cos(x)sin(y)

sin(a-B) = sin(a)cos(B) - cos(a)sin(B)

sin (a-B) + 2 cos a×sin B​ = sin (a)*cos (B) - cos (a)*sin (B) + 2 cos (a)*sin (B)​ = sin (a)*cos (B) + cos (a)*sin (B)

Воспользуемся формулой для sin (a)*cos (B) + cos (a)*sin (B):

sin(x+y) = sin(x)cos(y) + cos(x)sin(y)

sin (a)*cos (B) + cos (a)*sin (B) = sin(a+B)

Формулы:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра