√3 sinx+cosx=2 Воспользуемся формулами двойного угла и перейдем к аргументу х/2: √3*2sin(x/2)cos(x/2)+cos²(x/2)-sin²(x/2)=2cos²(x/2)+2sin²(x/2) √3*2sin(x/2)cos(x/2)-cos²(x/2)-3sin²(x/2)=0 Разделим на cos²(x/2) √3*2sin(x/2)/cos(x/2)-1-3sin²(x/2)/cos²(x/2)=0 √3*2tg(x/2)-1-3tg²(x/2)=0 Обозначим у=tg²(x/2) тогда √3*2y-1-3y²=0 3y²-2√3*y+1=0 D=4*3-4*3*1=12-12=0 Один корень у=(2√3)/(2*3)=1/√3 Возвращаемся к переменной х tg²(x/2)=1/√3
k - любое число б) k=0 Это около 105°. Принадлежит данному интервалу При k=1 и больше выходим из рассматриваемого интервала. Только один ответ тогда
Воспользуемся формулами двойного угла и перейдем к аргументу х/2:
√3*2sin(x/2)cos(x/2)+cos²(x/2)-sin²(x/2)=2cos²(x/2)+2sin²(x/2)
√3*2sin(x/2)cos(x/2)-cos²(x/2)-3sin²(x/2)=0
Разделим на cos²(x/2)
√3*2sin(x/2)/cos(x/2)-1-3sin²(x/2)/cos²(x/2)=0
√3*2tg(x/2)-1-3tg²(x/2)=0
Обозначим у=tg²(x/2) тогда
√3*2y-1-3y²=0
3y²-2√3*y+1=0
D=4*3-4*3*1=12-12=0
Один корень
у=(2√3)/(2*3)=1/√3 Возвращаемся к переменной х
tg²(x/2)=1/√3
k - любое число
б) k=0
Это около 105°. Принадлежит данному интервалу
При k=1 и больше выходим из рассматриваемого интервала. Только один ответ тогда
ответ: