A) известно, что sina + cosa = p найдите; 1) sina*cosa 2) sin²a + cos²a 3) sin³a + cos³a 4) sin⁴a + cos⁴a б)зная, что tgφ= и φ ∈ [0; π/2] в) докажите тождество 1) 2) ctg²a - cos²a = ctg²acos²a

Аделина2605 Аделина2605    2   20.08.2019 19:20    1

Ответы
lezginocka11 lezginocka11  05.10.2020 07:52
А)   sinα +cosα = p ;  

 ОГРАНИЧЕНИЕ НА  p:   p  = sinα +cosα  =√2sin(α+45°) 
 ⇒   |p| ≤ √2  иначе  - √2  ≤ p  ≤ √2  (  или  p ∈  [ -√2 ; √2]   )
в противном случае  , продолжать бессмысленно 
===
1)
sin²α +cos²α =1 _тождество.
2)
(sinα+cosα)² =sin²α +cos²α +2sinα*cosα =1+2sinα*cosα⇔p² = 1 +2sinα*cosα
⇒ sinα*cosα = (p² -1) /2.
3)
sin³α +cos³α = (sinα+cosα) (sin²α -sinα*cosα + cos²α) =p*( 1- (p² -1) /2 ) 
= p( -p² +3)/2.       * * *  p(3 -p²) /3 * * *
4)
просто:   sin⁴α +cos⁴α=(sinα +cosα)( sin³α +cos³α) - sinα*cosα (sin²α +cos²α) = p²( - p² +3)/2 - (p² -1) /2  = (-p⁴+2p² +1)/2 . 
 * * * (sinα +cosα)( sin³α +cos³α) =sin⁴α +cos⁴α +sinα*cosα (sin²α +cos²α) * * *
Можно  использовать формулу  (a+b)⁴ =a⁴ +4a³b +6a²b² +4ab³ +b⁴
⇒a⁴ +b⁴= (a+b)⁴-4ab(a²+b²)-6(ab)² .
sin⁴α +cos⁴α =(sinα +cosα)⁴ -  4sinα *cosα ( sin²α +cos²α) - 6(sinα *cosα )² .
sin⁴α +cos⁴α = (sinα +cosα)⁴ -  4sinα *cosα - 6(sinα *cosα )² 
=p⁴ - 2(p² -1)  - 3(p ² -1)² /2 = (-p⁴+2p² +1)/2 . 

Б)  Зная, что tgφ= (a²+b²) /(a+b)  и  φ ∈ [0; π/2]
 хорошо ,что нет продолжение

В)
Докажите тождество 
1) (tqx +tqy)/(ctqx +ctqy) =tqx*tqy  
* * * (a+b) /(1/a+1/b) =(a+b) /( (a+b) /ab ) =   ab * * *
(tqx +tqy)/(ctqx +ctqy) = (tqx +tqy)/( 1/tqx + 1/tqy) = (tqx +tqy)/( 1/tqx + 1/tqy)=
(tqx +tqy) /( (tqx + tqy ) / tqx *tqy ) =  tqx *tqy .
2) ctg²a - cos²a = ctg²acos²a 
---
ctg²a  -  cos²a =ctg²a  - ctq²α*sin²α=ctg²a(1 - sin²α) = ctg²a*cos²α .

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Основные тригонометрические тождества:
sin²x + cos²x = 1 ; tgx  =  sinx / cosx  ; ctgx  =  cosx / sinx ;  tgx * ctgx = 1 ;
tg²x + 1  =  1 / cos²x   ; ctg²x + 1  =  1/sin²x.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра