(a+2a+3a+..+n*a)/(n*n-2n-3)-3a/2*(n-3)=а*(1+2+3+..+n)/(n-3)(n+1)-3a/2*(n-3)=(2а*(1+2+3+..+n)-3a(n+1))/2(n-3)(n+1)=a(2(1+2+3+..+n)-3(n+1))/2(n-3)(n+1)=a(2(n+1)n/2-3n-3)/2()()=
=a(n^2+n-3n-3)/2()()=a()()/2()()=a/2
(a+2a+3a+..+n*a)/(n*n-2n-3)-3a/2*(n-3)=а*(1+2+3+..+n)/(n-3)(n+1)-3a/2*(n-3)=(2а*(1+2+3+..+n)-3a(n+1))/2(n-3)(n+1)=a(2(1+2+3+..+n)-3(n+1))/2(n-3)(n+1)=a(2(n+1)n/2-3n-3)/2()()=
=a(n^2+n-3n-3)/2()()=a()()/2()()=a/2