Для начала, нам необходимо вычислить векторы СА и СВ.
Вектор СА можно найти по формуле:
СА = (x2 - x1, y2 - y1)
где x1 и у1 - координаты точки С, x2 и у2 - координаты точки А.
Таким образом, получаем:
СА = (2 - 1, 3 - 5) = (1, -2)
Аналогично, вектор СВ можно найти по формуле:
СВ = (x2 - x1, y2 - y1)
где x1 и у1 - координаты точки С, x2 и у2 - координаты точки В.
Таким образом, получаем:
СВ = (-3 - 2, 2 - 3) = (-5, -1)
Теперь мы можем вычислить вектор ДМ, используя данные векторы СА и СВ:
ДМ = 3СА - 4СВ
Для этого мы умножаем каждую компоненту вектора СА на 3 и каждую компоненту вектора СВ на -4. Затем складываем полученные значения компонент между собой.
Таким образом, получаем:
ДМ = (3 * 1, 3 * -2) - (4 * -5, 4 * -1)
= (3, -6) - (-20, -4)
= (3, -6) + (20, 4)
= (3 + 20, -6 + 4)
= (23, -2)
Таким образом, координаты вектора ДМ равны (23, -2).
Вектор СА можно найти по формуле:
СА = (x2 - x1, y2 - y1)
где x1 и у1 - координаты точки С, x2 и у2 - координаты точки А.
Таким образом, получаем:
СА = (2 - 1, 3 - 5) = (1, -2)
Аналогично, вектор СВ можно найти по формуле:
СВ = (x2 - x1, y2 - y1)
где x1 и у1 - координаты точки С, x2 и у2 - координаты точки В.
Таким образом, получаем:
СВ = (-3 - 2, 2 - 3) = (-5, -1)
Теперь мы можем вычислить вектор ДМ, используя данные векторы СА и СВ:
ДМ = 3СА - 4СВ
Для этого мы умножаем каждую компоненту вектора СА на 3 и каждую компоненту вектора СВ на -4. Затем складываем полученные значения компонент между собой.
Таким образом, получаем:
ДМ = (3 * 1, 3 * -2) - (4 * -5, 4 * -1)
= (3, -6) - (-20, -4)
= (3, -6) + (20, 4)
= (3 + 20, -6 + 4)
= (23, -2)
Таким образом, координаты вектора ДМ равны (23, -2).