5sin2x+4cos^2x=0 ; 6cos2x-3cos^2x+5= 0 cosx-21sinx-9=0

кристина2626 кристина2626    2   26.06.2019 13:20    0

Ответы
thewitefox thewitefox  21.07.2020 10:51
1)
5*2*sin x*cos x + 4*cos^2 x =0
2cosx*(5sin x+ 2 cosx)=0
а) cos x = 0 
x1= пи/2 +пи*n, где n =0, +-1,+-2,
б) 5sin x+2 cos x =0
5 sin x = -2 cos x
sinx/cos x = -2/5
tg x = -0,4
x2 = arc tg (-0,4) + пи*n, где n =0, +-1,+-2,
2)
6 cos 2x- 3 cos ^2 x +5 =0
6*(cos^2 x-1) -3 cos^2 x +5 =0
6cos ^2 x -6 -3 cos ^2 x +5 =0
3 cos ^2 x -1 =0
cos ^2 x = 1/3
cos x = +-1/3
x1 = arccos (1/3) +2*пи*n, где n =0, +-1,+-2,
x2 = - arccos (1/3) +2*пи*n, где n =0, +-1,+-2,
x3 = arccos (-1/3) +2*пи*n, где n =0, +-1,+-2,
x4 = - arccos (-1/3) +2*пи*n, где n =0, +-1,+-2,
3)
cosx-21sinx-9=0
cos x = корень(1- sin^2 x)
корень(1- sin^2 x) -21sin x - 9 =0
корень(1- sin^2 x) = -21sin x + 9  возведем обе части уравнения в квадрат
1-sin^2 x = 441 sin^2 x +378sin x +81
  442 sin^2 x +378 sin x +80 =0
221 sin^2 x+189 sin x+40 = 0
Пусть t = sin x, тогда модуль t не больше 1
221 t^2 +189t +40 =0
D = 189^2-4*221*40 = 361 корень(D) = 19
t1= (-189+19)/(2*221)= -170/442 = 85/221= -5/13
t2= (-189-19)/(2*221) = -208/442 = -104/221= -8/17
cos x=-5/13
x1= arc cos(-5/13)+2*пи*n, где n =0, +-1,+-2,
x2= -  arc cos(-5/13)+2*пи*n, где n =0, +-1,+-2,
x3= arc cos(-8/17)+2*пи*n, где n =0, +-1,+-2,
x2= -  arc cos(8/17)+2*пи*n, где n =0, +-1,+-2,
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра