5sin²x+3sin2x-3cos²2x=4 добавлю 100 б при правильном решении

daniladremov daniladremov    3   14.09.2019 14:10    1

Ответы
Jirnyi Jirnyi  07.10.2020 14:25
Похоже, тут опечатка. Должно быть 3cos^2 x.
5sin^2 x + 3*2sin x*cos x - 3cos^2 x = 4sin^2 x + 4cos^2 x
Переносим все налево
sin^2 x + 6sin x*cos x - 7cos^2 x = 0
Делим все на cos^2 x
tg^2 x + 6tg x - 7 = 0
Квадратное уравнение относительно tg x
(tg x - 1)(tg x + 7) = 0
1) tg x = 1; x1 = pi/4 + pi*k
2) tg x = -7; x2 = -arctg(7) + pi*n

Если же опечатки нет, то получается уравнение 4 степени
5sin^2 x + 3*2sin x*cos x - 3(cos 2x)^2 = 4sin^2 x + 4cos^2 x
5sin^2 x + 6sin x*cos x - 3(cos^2 x - sin^2 x)^2 = 4sin^2 x + 4cos^2 x
3(cos^4 x-2sin^2 x*cos^2 x+sin^4 x)-sin^2 x-6sin x*cos x+4cos^2 x = 0
3sin^4 x-sin^2 x+3cos^4 x+4cos^2 x-6sin^2 x*cos^2 x-6sin x*cos x = 0
Как это решать дальше - непонятно. Если разделить на cos^4 x, то
3tg^4 x - tg^2 x/cos^2 x + 3 + 4/cos^2 x - 6tg^2 x - 6tg x/cos^2 x = 0
Что тоже оптимизма не добавляет.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра