3. катер в 10: 00 вышел из пункта а в пункт в, расположенный в 15 км от а. пробыв в пункте в 1 час 15 минут, катер отправился назад и вернулся в пункт а в 14: 00 того же дня. определите (в км/ч) собственную скорость катера, если известно, что скорость течения реки равна 1 км/ч

NiceLeave NiceLeave    3   19.05.2019 00:50    2

Ответы
IrinaErmolenko IrinaErmolenko  12.06.2020 06:19

время, которое катер был в пути = 14-10-1ч.15мин = 2ч.45мин = 2,75ч

пусть X - скорость катера, тогда время, потраченное на путь из А в В равно \frac{15}{x+1}, где 15 - расстояние между А и В, а (x+1) скорость катера по течению.

Время, затраченное на обратный путь \frac{15}{x-1}, (x-1) - скорость против течения.

А всего в пути катер был 2,75ч. Составим уравнение

\frac{15}{x+1}+\frac{15}{x-1}=2.75

\frac{15(x-1)+15(x+1)}{(x+1)(x-1)}=2.75

15x-15+15x+15=2.75(x^2-1)

2.75x^2-30x-2.75=0

X1=-0.09 - не подходит, т.к. скорость не может быть отрицательной

X2 = 11 км/ч - скорость катера

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра