sin((x/2)–(π/4)) > –1/2
⇒
(–π/6) +2πn < (x/2)–(π/4) < π–(–π/6) + 2πn, n ∈ Z
(–π/6) +2πn < (x/2)–(π/4) < (7π/6) + 2πn, n ∈ Z
(–π/6)+(π/4) +2πn < (x/2) < (7π/6)+ (π/4) + 2πn, n ∈ Z
(π/12) +2πn < (x/2) < (17π/12)+ 2πn, n ∈ Z
(π/6) +4πn < x < (17π/6)+ 4πn, n ∈ Z
sin((x/2)–(π/4)) > –1/2
⇒
(–π/6) +2πn < (x/2)–(π/4) < π–(–π/6) + 2πn, n ∈ Z
(–π/6) +2πn < (x/2)–(π/4) < (7π/6) + 2πn, n ∈ Z
(–π/6)+(π/4) +2πn < (x/2) < (7π/6)+ (π/4) + 2πn, n ∈ Z
(π/12) +2πn < (x/2) < (17π/12)+ 2πn, n ∈ Z
(π/6) +4πn < x < (17π/6)+ 4πn, n ∈ Z