cos2x-0.5+sin^2 x = 0
cos2x-0.5+1-cos^2 x=0
2sinxcosx+0.5-cos^2 x = 0
2tgx+0.5-1 = 0
2tgx-0.5=0
2tgx=0.5
tgx = 1/4
x=arctg (1/4) + πn, n∈z
ответ: x=arctg (1/4) + πn, n∈z
3(cosx)^2 - 0.5sin2x = 0
3(cosx)^2 - sinx * cosx = 0
cosx * (3cosx - sinx) = 0
cosx = 0
x = Pi/2 + Pi*k, k принадл Z
3cosx - sinx = 0 | :sinx, sinx не = 0, x не = ЗPi*n, n принадл Z
3ctgx - 1 = 0
3ctgx = 1
ctgx = 1/3
x = arcctg 1/3 + Pi*m, m принадл Z
cos2x-0.5+sin^2 x = 0
cos2x-0.5+1-cos^2 x=0
2sinxcosx+0.5-cos^2 x = 0
2tgx+0.5-1 = 0
2tgx-0.5=0
2tgx=0.5
tgx = 1/4
x=arctg (1/4) + πn, n∈z
ответ: x=arctg (1/4) + πn, n∈z