20+10 за лучший ответ найдите нули функции и промежутки возрастания и убывания y=cos(x-pi/3)+1

Arina3010 Arina3010    3   26.05.2019 18:20    2

Ответы
rekiol544 rekiol544  23.06.2020 06:27
Нули функции
y=0;
cos(x-\frac{\pi}{3})+1=0
cos(x-\frac{\pi}{3})=-1
x-\frac{\pi}{3}=\pi+2*\pi*k
x=\frac{4*\pi}{3}+2*\pi*k
k є Z

так как график данной функции получается смещением вправо по оси ОХ на \frac{\pi}{3} (и на 1 верх по оси OY)
то функция возростает на промежутках
(\frac{4*\pi}{3}+2*\pi*n;\frac{7*\pi}{3}+2*\pi*n)
n є Z
убывает на (\frac{\pi}{3}+2*\pi*l;\frac{4*\pi}{3}+2*\pi*l
l є Z

точки x=\frac{4*\pi}{3}+2*\pi*n -точки минимума (в них значение 0)
точки \frac{\pi}{3}+2*\pi*l- точки максимума (в них значение 2)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра