√2(Sin2x - Cos2x) = Cos4x
√2(Sin2x - Cos2x) = Cos²2x - Sin²2x
-√2( Cos2x - Sin2x) -( Cos2x - Sin2x)(Cos2x + Sin2x) = 0
(Cos2x - Sin2x)(√2 - Cos2x - Sin2x) = 0
1) Cos2x - Sin2x = 0 |: Cos2x , Cos2x ≠ 0
1 - tg2x = 0
tg2x = 1
√2(Sin2x - Cos2x) = Cos4x
√2(Sin2x - Cos2x) = Cos²2x - Sin²2x
-√2( Cos2x - Sin2x) -( Cos2x - Sin2x)(Cos2x + Sin2x) = 0
(Cos2x - Sin2x)(√2 - Cos2x - Sin2x) = 0
1) Cos2x - Sin2x = 0 |: Cos2x , Cos2x ≠ 0
1 - tg2x = 0
tg2x = 1