Пусть х - первое число, у - второе число. По условию, откуда и откуда
Найдем точки пересечения графиков функций и . Для этого приравниваем функции
По теореме Виета
Смотрим рисунок. Разобьем заштрихованную фигуру прямыми x = 2 и x = 3 и найдем площади
кв. ед.
Площадь заштрихованной фигуры:
Искомая вероятность:
Пусть х - первое число, у - второе число. По условию,
откуда
и
откуда 
Найдем точки пересечения графиков функций
и
. Для этого приравниваем функции
По теореме Виета
Смотрим рисунок. Разобьем заштрихованную фигуру прямыми x = 2 и x = 3 и найдем площади
Площадь заштрихованной фигуры:
Искомая вероятность: