100 на оси y взята точка b, из нее проведены касательные к графику функции известно, что эти касательные образуют между собой угол 90 градусов. найдите координаты точки b

БеЗуМнаЯолИвьЕшКа БеЗуМнаЯолИвьЕшКа    1   07.06.2019 08:40    2

Ответы
filysh74 filysh74  07.07.2020 06:54
 Касательная прямая есть производная в точке.
 Пусть точка касания с графиком имеет координаты A(x_{1};y_{1})
 График функций y=3-\frac{x^2}{2} симметричен относительно оси oY.  Пересекающая  ось oY     в   точке f(0)=3 .
Очевидно что координата точки B(x_{2};y_{2})\\
y_{2}3.
Рассмотрим прямоугольный треугольник образованный касательной к графику функций с осями ординат и абсцисс. 
  f'(x)=tga. Так как график  симметричен , то угол образующие касательные 90а , ордината будет являться  биссектрисой . Следовательно треугольник будет прямоугольным и равнобедренным. 
пусть касательная имеет вид y=kx+b
y'=(3-\frac{x^2}{2})'=-x\\
-x=1\\
x=-1 , так как tg45а=1 
Точка касания равна -1 , касательная в этой точке по формуле 
 f(-1)=\frac{5}{2}\\
f'(-1)=1\\\\
 y=\frac{5}{2}+1(x+1)=x+\frac{7}{2}\\

То есть координата B(0;\frac{7}{2})=B(0; \ 3,5)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра