100 ,что при любом натуральном значении n значение выражения 5^n 3^2n-2^3n кратно третью часть,когда n=k+1..

LolaTi LolaTi    1   25.06.2019 21:30    0

Ответы
polinna2006p06aeo polinna2006p06aeo  20.07.2020 21:45
5^n 3^2n-2^3n
1) при n=1
5^n 3^2n-2^3n=5* 9-8=45-8=37 - делится на 37
2) допустим делится на 37 при n=k
5^n 3^2n-2^3n=5^k* 3^2k-2^3k=37*A - делится на 37
значит 2^3k=5^k* 3^2k-37*A
3) проверим делится ли на 37 при n=k+1
5^n 3^2n-2^3n=
=5^(k+1)* 3^(2(k+1))-2^(3(k+1))=
=5*9*5^(k)* 3^(2k)-8*2^(3k)=
=45*5^(k)* 3^(2k)-8*(5^k* 3^2k-37*A)=
=37*5^(k)* 3^(2k)+8*37*A=
=37*(5^(k)* 3^(2k)+8*A) - делится на 37 - доказано
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра