#1 решить неравенство: модуль 2х-3 * на модуль х-2 больше или равно модуль х-6 +2 ( +2 без модуля) #2 сумма длин катетов и гипотенузы прямоугольного треугольника равен 11 тангенс угла между ними равен 3/4. найти периметр треугольника

NikaMalinka2 NikaMalinka2    1   22.05.2019 13:20    0

Ответы
Shkolnik98rus Shkolnik98rus  01.10.2020 07:35

#1. |2x-3|=3-2x, если х<3/2;   |2x-3|=2x-3, если х≥3/2;   

|x-2|=2-x, если х<2;   |x-2|=-2x, если х≥2;

|x-6|=6-x, если х<6;   |x-6|=x-6, если х≥6.

Получаем три случая:

1) на множестве (-∞;3/2)U[2;6) получаем неравенство

(2х-3)(х-2)≥(6-х)+2

2х²-3х-4х+6-6+х-2≥0

2х²-6х-2≥0

х²-3х-1≥0

D=9+4=13

(x-\frac{3-\sqrt{13}}{2})(x-\frac{3+\sqrt{13}}{2})\geq0 \\\ x \in (-\infty; \frac{3-\sqrt{13}}{2}] \cup [\frac{3+\sqrt{13}}{2}; +\infty)

C учётом (-∞;3/2)U[2;6) получим x \in (-\infty; \frac{3-\sqrt{13}}{2}]

2) на интервале 1,5≤х<2 получим неравенство

(2х-3)(2-х)≥(6-х)+2

4х-6-2х²+3х-6+х-2≥0

-2х²+8х-14≥0

х²-4х+7≤0

D=16-28<0

решений нет

3) на интервале х≥6 получим неравенство

(2х-3)(х-2)≥(х-6)+2

2х²-3х-4х+6+6-х-2≥0

2х²-8х+10≥0

х²-4х+5≥0

D=16-20<0

решений нет

ответ: x \in (-\infty; \frac{3-\sqrt{13}}{2}]

 

#2. Пусть ∆АВС-прямоугольный треугольник с гипотенузой АВ, катетами АС и ВС.

По условию ВС+АВ=11, tg В = 3/4.

 

По определению тангенса острого угла прямоугольного треугольника

tg B=AC/BC=3/4   => 3BC=4AC   => AC=\frac{3}{4}BC

 

По теореме Пифагора АВ² = АС² + ВС²

Пусть ВС=х, тогда АВ=11-х, АС=3х/4

(11-x)^2=(\frac{3}{4}x)^2+x^2 \\\ 121-22x+x^2=\frac{9}{16}x^2+x^2 \\\ \frac{9}{16}x^2+22x-121=0 \\\ 9x^2+352x-1936=0\\\ \frac{D}{4}=176^2+9*1936=30976+17424=48400 \\\ x_1=-44,\ x_2=\frac{44}{9}=4\frac{8}{9} \\\ BC=4\frac{8}{9} \\\ AC=\frac{3}{4}*\frac{44}{9}=\frac{11}{3}=3\frac{2}{3}\\\ P_{ABC}=AB+BC+AC=11+AC=11+3\frac{2}{3}=14\frac{2}{3}

ответ: 14\frac{2}{3}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра