1)прямая у=6х-7 является касательной и кривой f(x)=x^2+bx+c в точке а(2; 5). найдите b и с. 2) объясните, почему функция не имеет точек экстремума: а) у=-3/x^2 б) у=сtg4x 3) при каких значениях b функция у=-x^3-6bx убывает на всей числовой прямой?
Задача на уравнение касательной к графику функции. Решение см во вложении.
К сожалению файл не вставляется во вложение.
Начну писать так:
Задана функция f(x) = 3х^2-3x+c
В точке с координатой х = а касательная описывается уравнением y=3x+4. Угловой коэффициент этой прямой k = 3, это и есть значение производной функции в этой точке f'(a) = 3.
Найдём производную f'(x) = 6x - 3, тогда f'(а) = 6а - 3 = 3 и а = 1
найдём f(a) при а = 1 f(a)=3*1 - 3*1 +с = с
Уравнение касательной имеет вид: у = f(a) +f'(a)(x-a)
Задача на уравнение касательной к графику функции. Решение см во вложении.
К сожалению файл не вставляется во вложение.
Начну писать так:
Задана функция f(x) = 3х^2-3x+c
В точке с координатой х = а касательная описывается уравнением y=3x+4. Угловой коэффициент этой прямой k = 3, это и есть значение производной функции в этой точке f'(a) = 3.
Найдём производную f'(x) = 6x - 3, тогда f'(а) = 6а - 3 = 3 и а = 1
найдём f(a) при а = 1 f(a)=3*1 - 3*1 +с = с
Уравнение касательной имеет вид: у = f(a) +f'(a)(x-a)
Подставим сюда y=3x+4, f(a) = с, f'(a) = 3 а=1
3x+4 = с +3*(х-1)
3x+4 =с +3х-3
4 = с -3
с=7