1. найдите значение производной функции f(x)=1-6корней 3 степени из х в точке х0=8. 2. записать уравнение касательной к графику функции f(x)=sinx - 3x + 2 в точке х0=0.

пропрл пропрл    3   10.07.2019 06:40    4

Ответы
maximiva7273737 maximiva7273737  17.09.2020 10:53
1) (1-6∛x)'=0-(6* x^(1/3))'=-6*(1/3) * x^(1/3 -1)=-2x^(-2/3)=-2 /(x^(2/3))
f '(8)=-2/((8^(2/3))=-2/(2^(3*(2/3))=-2/(2^2)=-(2/4)=-0,5
2) y=f(x0)+f'(x0) *(x-x0)-уравнение касательной
f'(x)=(sinx-3x+2)'=cosx-3
f'(0)=cos0-3=1-3=-2;
f(0)=sin0-3*0+2=0-0+2=2
y=2+(-2)*(x-0)
y=-2x+2- уравнение касательной
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра